UNIT OPERATIONS IN FOOD PROCESSING
Contents > Evaporation > Evaporation Equipment Print   this page

Home
Contents
About the book
Introduction
Material and energy
balances

Fluid-flow theory
Fluid-flow applications
Heat-transfer theory
Heat-transfer
applications

Drying
Evaporation
Contact-equilibrium
separation processes

Mechanical
separations

Size reduction
Mixing
Appendices
Index to Figures
Index to Examples
References
Bibliography
Useful links
Feedback (email link)

CHAPTER 8
EVAPORATION
(cont'd)

EVAPORATION EQUIPMENT


Open Pans
Horizontal-tube Evaporators
Vertical-tube Evaporators
Plate Evaporators
Long-tube Evaporators
Forced-circulation Evaporators
Evaporation for Heat-sensitive Liquids


Open Pans

The most elementary form of evaporator consists of an open pan in which the liquid is boiled. Heat can be supplied through a steam jacket or through coils, and scrapers or paddles may be fitted to provide agitation. Such evaporators are simple and low in capital cost, but they are expensive in their running cost as heat economy is poor.


Horizontal-tube Evaporators

The horizontal-tube evaporator is a development of the open pan, in which the pan is closed in, generally in a vertical cylinder. The heating tubes are arranged in a horizontal bundle immersed in the liquid at the bottom of the cylinder. Liquid circulation is rather poor in this type of evaporator.


Vertical-tube Evaporators

By using vertical, rather than horizontal tubes, the natural circulation of the heated liquid can be made to give good heat transfer. The standard evaporator, shown in Fig. 8.1, is an example of this type. Recirculation of the liquid is through a large “downcomer” so that the liquors rise through the vertical tubes about 5-8 cm diameter, boil in the space just above the upper tube plate and recirculate through the downcomers. The hydrostatic head reduces boiling on the lower tubes, which are covered by the circulating liquid. The length to diameter ratio of the tubes is of the order of 15:1. The basket evaporator shown in Fig. 8.4(a) is a variant of the calandria evaporator in which the steam chest is contained in a basket suspended in the lower part of the evaporator, and recirculation occurs through the annular space round the basket.

FIG. 8.4 Evaporators (a) basket type (b) long tube (c) forced circulation
Figure 8.4 Evaporators (a) basket type (b) long tube (c) forced circulation



Plate Evaporators

The plate heat exchanger can be adapted for use as an evaporator. The spacings can be increased between the plates and appropriate passages provided so that the much larger volume of the vapours, when compared with the liquid, can be accommodated. Plate evaporators can provide good heat transfer and also ease of cleaning.


Long tube Evaporators

Tall slender vertical tubes may be used for evaporators as shown in Fig. 8.4(b). The tubes, which may have a length to diameter ratio of the order of 100:1, pass vertically upward inside the steam chest. The liquid may either pass down through the tubes, called a falling- ilm evaporator, or be carried up by the evaporating liquor in which case it is called a climbing-film evaporator. Evaporation occurs on the walls of the tubes. Because circulation rates are high and the surface films are thin, good conditions are obtained for the concentration of heat sensitive liquids due to high heat transfer rates and short heating times.

Generally, the liquid is not recirculated, and if sufficient evaporation does not occur in one pass, the liquid is fed to another pass. In the climbing-film evaporator, as the liquid boils on the inside of the tube slugs of vapour form and this vapour carries up the remaining liquid which continues to boil. Tube diameters are of the order of 2.5 to 5 cm, contact times may be as low as 5-10 sec. Overall heat- transfer coefficients may be up to five times as great as from a heated surface immersed in a boiling liquid. In the falling-film type, the tube diameters are rather greater, about 8 cm, and these are specifically suitable for viscous liquids.


Forced circulation Evaporators

The heat transfer coefficients from condensing steam are high, so that the major resistance to heat flow in an evaporator is usually in the liquid film. Tubes are generally made of metals with a high thermal conductivity, though scale formation may occur on the tubes which reduce the tube conductance.

The liquid-film coefficients can be increased by improving the circulation of the liquid and by increasing its velocity of flow across the heating surfaces. Pumps, or impellers, can be fitted in the liquid circuit to help with this. Using pump circulation, the heat exchange surface can be divorced from the boiling and separating sections of the evaporator, as shown in Fig.8.4(c). Alternatively, impeller blades may be inserted into flow passages such as the downcomer of a calandria- type evaporator. Forced circulation is used particularly with viscous liquids: it may also be worth consideration for expensive heat exchange surfaces when these are required because of corrosion or hygiene requirements. In this case it pays to obtain the greatest possible heat flow through each square metre of heat exchange surface.

Also under the heading of forced-circulation evaporators are various scraped surface and agitated film evaporators. In one type the material to be evaporated passes down over the interior walls of a heated cylinder and it is scraped by rotating scraper blades to maintain a thin film, high heat transfer and a short and controlled residence time exposed to heat.


Evaporation for Heat-sensitive Liquids

Many food products with volatile flavour constituents retain more of these if they are evaporated under conditions favouring short contact times with the hot surfaces. This can be achieved for solutions of low viscosity by climbing- and falling-film evaporators, either tubular or plate types. As the viscosity increases, for example at higher concentrations, mechanical transport across heated surfaces is used to advantage. Methods include mechanically scraped surfaces, and the flow of the solutions over heated spinning surfaces. Under such conditions residence times can be fractions of a minute and when combined with a working vacuum as low as can reasonably be maintained, volatiles retention can be maximized.


Evaporation > SUMMARY, PROBLEMS


To top of pageBack to the top

Unit Operations in Food Processing. Copyright © 1983, R. L. Earle. :: Published by NZIFST (Inc.)
NZIFST - The New Zealand Institute of Food Science & Technology